О  продолжительности  и  климатических  параметрах  охладительного  периода  (2)
  Стройматериалы
  Оборудование
  Технологии
  Инструмент
  Предложения строителей
  Как попасть на сайт
  К началу

 
 Новости строительства

4.4.2024
Каждую четверть часа – новый вид из окна

  Многоэтажные вращающиеся жилые конструкции все больше занимают умы архитекторов и строителей. Что именно привлекает проектировщиков и жиль...

15.4.2024
Volvo покажет, как эффективно копать

  Известная шведская автомобильная корпорация Volvo Construction Equipment представила потребительскому рынку новый 70-тонный гидравлический...

10.4.2024
Китайцы намерены построить самый большой канатно-подвесной мост

  В Китае строится уникальный мост длиной 2200 м. Тип сооружения – канатно-подвесной. Кабели подвески будут располагаться на расстоянии 10 м...

10.4.2024
Загородное поместье в свободном полете над Нью-Йорком

  Всемирно известный испанский архитектор Сантьяго Калатрава намерен построить в элитном районе нижнего Манхэттена, неподалеку от площадки В...

 

 
 Популярные статьи


 

 

 

 О  продолжительности  и  климатических  параметрах  охладительного  периода  (2)

   Принимая нормальный закон распределения срочной наружной температуры по обеспеченности [5] и пользуясь методами теории вероятностей, можно для каждого значения tср вычислить величину среднего квадратического отклонения tн (СКО), при которой показанная на рис.1 зависимость получается автоматически с использованием необходимых формул. В частности, для Москвы уровень СКО составляет около 10,1°, т.е. величину того же порядка, что и амплитуда годового хода температуры (в Москве – 12,7°).

  

   При этом оказывается, что с ростом tср значение СКО (s) несколько уменьшается, что может быть выражено следующей ориентировочной зависимостью:

s = 11,8 – 0,2tср, °С. (3)

Данный факт объясняется тем обстоятельством, что в районах с более теплым климатом колебания наружной температуры всегда будут менее выраженными. Более того, величина СКО, рассчитанная для теплого периода года, оказывается меньше, чем для холодного [5], т.е. функция распределения tн на самом деле не совсем симметрична относительно tср. Это тоже объяснимо, поскольку летом обычно не бывает таких резких изменений температуры, которые характерны для зимних условий. Поэтому нормальный закон распределения для tн можно применять только с некоторым приближением.

  

Принимая теперь значение внутренней температуры в помещении в теплый период года, а значит, и минимальный уровень наружной температуры, служащий для определения начала и конца охладительного периода, равным +22° (по рекомендации [6]), с использованием (3) можно найти зависимость zохл (в сутках) от величины tср. График этой зависимости приведен на рис.2 (верхняя линия). Как видно из графика, с ростом tср охладительный период удлиняется, причем эта зависимость близка к параболической. С некоторым приближением она может быть описана следующей формулой:

Zохл = 14 + 1,5tср + 0,17t2ср, сут. (4)

Необходимо только заметить, что все значения, соответствующие этой линии, показаны увеличенными в 10 раз для удобства комбинации со вторым графиком, изображающим параметр ГСОПх. В частности, для Москвы при среднегодовой температуре +4° находим продолжительность охладительного периода в 22,7 сут. Более точные данные, определяемые непосредственно по многолетним наблюдениям [6], дают величину 22 сут, что почти не отличается от значения, приведенного на рис.2, поэтому для практических целей точность полученного результата вполне достаточна.

Библиографический список:
1. Строительные нормы и правила. СНиП 23-01-99 “Строительная климатология”. – М., ГУП ЦПП, 2000.
2. Строительные нормы и правила. СНиП 2.04.05-91* “Отопление, вентиляция и кондиционирование”. – М., ГУП ЦПП, 1998.
3. Самарин О.Д. О взаимосвязи расчетных параметров наружного климата // Строительные материалы, оборудование, технологии XXI века. № 2. 2001. С. 34 – 35.
4. Самарин О.Д. О продолжительности и климатических параметрах отопительного сезона //Строительные материалы, оборудование, технологии XXI века. №4. 2001.
С.24 – 25.
5. Самарин О.Д. О вероятностно-статистическом моделировании взаимосвязи расчетных параметров наружного климата (Сб. докл. конф. НИИСФ, 2001, с.312 – 318).
6. Технология оптимизации расхода энергии вновь возводимых и реконструируемых зданий. Отчет о НИР по теме 6.16.2. / Климова Г.К., Богословский В.Н. Раздел II. М., НИИСФ, 1998. С. 39 – 51.

   Окончание следует.

  О.Д. Самарин